

Fig. 1. Optional control panel for SinuTrain

Fig. 2. Lathe with 3 axes and driven tools

Fig. 2.1 Milling machine with 3 axes

Hardware:	Processor 2 GHz, RAM 4 GB, Internet connection, USB data port
Disc Capacity:	Approx. 3.3 GB for full installation
Operating System:	Windows 7 SP1 (32 and 64 Bit) (no: Starter, Web Edition, Embedded) Windows 8.1 (32 and 64 Bit) (no: RT) Windows 10 (64 Bit) (no: Mobile, Mobile Enterpr.)
User Settings:	PC administrator rights required for installation and use
License:	The machines examined in the course (DEMO- Lathe and DEMO-Milling Machine) do not require any license

Fig. 3. Minimum PC requirements

Username:	Password:

Fig. 4. Personal access data to Siemens website

Fig. 5. Starting window of the simulation program

Fig. 6. Buttons for the selection of the operating environments

Fig. 7. Buttons for cursor movement and data entry

Fig. 8. Technical drawing of the introductory workpiece of the course

Fig. 9. Organization of the programs on the PROGRAM MANAGER page

Fig. 10. Dialog box for the import of tooling data

Fig. 11. Window for the confirmation and overwriting of the tool data

Blank part:	Shape of the blank part (e.g. cylinder)
XA:	External diameter of the blank part (e.g. 80 mm).
ZA:	Value of the machining allowance on the front face of the blank part (e.g. 0.5 mm).
ZI:	Length of the blank part. If by pushing SELECT you select ABSOLUTE (recommended), the length refers to the part zero point, if INCREMENTAL, the length refers to the front face of the part, machining allowance included.
ZB:	Extension of the face of the blank part from the jaws of the chuck. For the selection of absolute or incremental the same applies as for ZI.

Fig. 12. Description of the blank part dimensions

Fig. 13. Program opened and ready for simulation

Fig. 14. Display options for the workpiece

Fig. 15. Execution of the graphic simulation in single block mode

Fig. 16. Activation and setting of the potentiometers for the execution of the program in automatic cycle

Fig. 17. Right-hand rule: definition of the axes and their positive motion according to ISO Standards. The positive motion is always determined in relation to the moving path of the tool on the workpiece.

Fig. 18. Solid of revolution around the Z-axis of the profile described on the plane X-Z

Fig. 19. Angular orientation of the spindle for the creation of radial holes

Fig. 20. Example of a cylindrical interpolation C-Z

Fig. 21. Example of a frontal interpolation C-X

Fig. 22. Right-hand rule to determine the positive motion of the rotating axes

Fig. 23. C-axis positive programming direction and real movement of the workpiece

Fig. 24. Milling of a key using the real Y-axis

Fig. 25. Universal lathe with B-axis

Fig. 26. Lathe with A-axis

Fig. 27. Programming scheme

Fig. 28. Traditional lathe where the tool moves on the workpiece

Fig. 29. Lathe with real movement of the Z-axis and of the X-axis on the workpiece

Fig. 30. Technical drawing created by the program PRG_04_01

Fig. 31. Technical drawing of the part to create in program EX_04_01

Fig. 32. Display of the PROGRAM MANAGER

Fig. 33. File properties window

Block	Word	Word	Word	; Comment
Block	N10	G0	X20	; First block
Block	N20	G2	Z37	; Second block
Block	N30	G91		
Block	N40			
Block	N50	M30		; End of program

Fig. 34. Name of the elements constituting the program

Address	Meaning
N	Address of block number
10	Block number
G	Preparatory function
X, Y, Z	Path information
F	Feed rate
S	Number of revolutions or cutting speed
T	Tool position
D	Number of tool corrector
M	Auxiliary function

Fig. 35. Meaning of some addresses

Name	Meaning
G0	Rapid traverse motion
G1	Linear interpolation
G2	Circular interpolation clockwise
G3	Circular interpolation counterclockwise
G33	Thread cutting with constant lead
G331	Rigid tapping
G332	Return (rigid tapping)
G34	Thread cutting with variable lead
G35	Thread with decreasing lead

Fig. 36. Group 1: Motion commands

Name	Meaning
G17	Plane selection 1st - 2nd geometry axis (X-Y)
G18	Plane selection 3rd - 1st geometry axis (Z-X)
G19	Plane selection 2nd - 3rd geometry axis (Y-Z)

Fig. 37. Group 6: Plane selection

Name	Meaning
G40	Deactivation of the tool radius compensation
G41	Activation of the tool radius compensation left of contour
G42	Activation of the tool radius compensation right of contour

Fig. 38. Group 7: Tool radius compensation

Name	Meaning
G500	Cancel all adjustable frames G54 - G57 if no value in G500
G54	Settable zero offset
G55	Settable zero offset
G56	Settable zero offset
G57	Settable zero offset

Fig. 39. Group 8: Settable zero offset (frame)

Name	Meaning
G60	Velocity reduction, precise stop
G64	Continuous path mode

Fig. 40. Group 10: Precise stop – continuous path mode

Name	Meaning
G70	Selects English units (inches and feet)
G71	Selects metric units (millimeter and meter)

Fig. 41. Group 13: Workpiece dimensioning inch/metric

Name	Meaning
G90	Absolute coordinate system
G91	Incremental coordinate system

Fig. 42. Group 14: Absolute/incremental coordinate system

Name	Meaning	
G94	Linear feed mm/min or inch/min	
G95	Rotational feed in mm/rev or inch/rev	
G96	Constant cutting speed in m/min or feet/min	
G97	Constant number of revolutions in rev./min	

Fig. 43. Group 15: Feed rate and rotation type

Name	Meaning
G4	Dwell time preset
G9	Exact stop only in the block where it is programmed
G53	Suppression of current frame

Fig. 44. Self-deleting instructions

Name	Meaning
M0	Programmed stop
M1	Optional stop activated by the control panel
M3	Spindle clockwise
M4	Spindle counterclockwise
M5	Spindle stop
M6	Tool change (if provided)
M8	Cooling liquid activation
M9	Cooling liquid stop
M30	End of program and return to beginning
M17	End of subroutine and return to main program
M40	Automatic gear change (when provided)
M41	Gear stage 1 (if provided)
M42	Gear stage 2 (if provided)
M43	Gear stage 3 (if provided)
M44	Gear stage 4 (if provided)
M45	Gear stage 5 (if provided)
M70	Spindle with transition to functioning as an axis

Fig. 45. Auxiliary or miscellaneous functions

Fig. 46. Start of the simulation in order to analyze the program

Fig. 47. Automatic block numbering screen

Fig. 48. Program without block numbers

Fig. 49. Machine coordinate system: point moved by the NC referring to the machine zero point

Fig. 50. 1: Spindle nose; 2: chuck with three jaws; 3: Elastic collet for external hold; 4: Elastic expansion collet for internal hold of the workpiece

Fig. 51. Workpiece coordinate system: tool tip referring to the part zero point

Fig. 52. Definition of the part zero point

Fig. 53. Table of work offsets

Fig. 54. Tool offset values

Fig. 55. Page for manual data entry

Fig. 56. Buttons for the selection of the continuous manual feed

Fig. 57. Buttons for the selection of the manual feed by incrementation

Fig. 58. Touch-off position of the part face in the workpiece coordinate system

Fig. 59. Touch-off position of the part face in the machine coordinate system

Fig. 60. Current position of the tool after activation of the workpiece coordinate system programmed in MDA

Fig. 61. Page for the automatic offset by touching the workpiece

Fig. 62. Tool list page

Fig. 63. Double corrector used for a 3 mm grooving tool

Fig. 64. Tool correction page

Fig. 65. Impossible to create a new tool when an already existing tool is selected

Fig. 66. Selection of an empty location for the creation of a new tool

■ EXAMPLE 1 1 80.000 40.000 0.100 3.000

Fig. 68. Creation of a new tool

Fig. 67. Selection of the type of new tool to be created and position of the cutting edge

10.0

Fig. 69. Saving of tooling data

Fig. 70. Window for the saving of tooling data

Fig. 71. Distance traveled by the tool in one revolution

Fig. 72. Distance traveled by the tool in one minute with rotating workpiece

Fig. 73. Formula for the calculation of the cutting speed

Fig. 74. Name of the spindles shown on the "current position" page

Fig. 75. Inverse formula for the calculation of the number of revolutions

Fig. 76. Graph for the evolution of cutting speed at variation of working diameter, at constant number of revolutions

Fig. 77. Graph for the cutting speed trend beyond the number of revolutions threshold

Working diameter (mm)	Number of revolutions (r/min)	Cutting speed (m/min)			
50	764	120			
62		140			
19		85			
5		100			
55	1200				
8	1200				
62	650				
	4500	100			
	2000	40			
	2000	220			

Fig. 78. Exercise for the calculation of the cutting speed, the number of revolutions and the diameter from which the cutting speed begins to decrease

Fig. 79. Creation of a new program

Cut length (mm)	Feed rate (mm/rev)	Number of revolutions (rpm)	Time necessary (seconds)
60	0.3	840	
60	0.12	1100	
24	0.1	1260	
18	0.06	780	
22	0.14	1530	
80	0.18	2100	
66	0.05	1400	
43	0.25	600	

Fig. 80. Calculation exercises for the time needed for the tool to execute a pass

Fig. 81. Saving of folders and programs in an external memory

Fig. 82. Origin of the axes in the absolute coordinate system referring to the part zero

Fig. 83. Design values referring to the part zero point.

Fig. 84. Origin of the axes in the incremental coordinate system

Fig. 85. Trajectory of rapid approach with the functions RTLION and RTLIOF

Fig. 86. Movement of the tool along the Z-axis

Fig. 87. Linear interpolation with tool moving along the axes X and Z

Fig. 88. Execution of a threading in multiple passes with G33

Fig. 89. Lead value to be programmed in a conical thread executed with G33

Fig. 90. Example of the programming of an external turning

Fig. 91. Elimination of the facing witness mark

Fig. 92. Example of the programming of a threaded workpiece

Fig. 93. Round between two line by means of the RND function

Fig. 94. Round between a line and a circle arc by means of the RND function

Fig. 95. Chamfer executed between two lines by means of the function CHR or CHF

Fig. 96. Scheme for the definition of the angle by means of the function ANG

Fig. 97. Programming of a profile by means of the functions CHR, FRCM and ANG

Previous program created by programming the arrival point coordinates.	New program created by the direct programming of chamfers and angles.
;FINISHING OF THE PROFILE T2 D1 G95 S1800 M4 G0 X30 Z2 G1 Z0 F0.1 G1 X32 Z-1 G1 Z-22 G1 X40 Z-38 G1 X46 G1 X48 Z-39 G1 Z-60 G1 X58 G1 X60 Z-61 G1 Z-62 G1 X61 G0 X200 G0 Z200	;FINISHING OF THE PROFILE T2 D1 G95 S1800 M4 G0 X26 Z2 G1 Z0 F0.1 G1 X32 CHR=1 FRCM=0.04 G1 Z-22 G1 Z-38 ANG=166 G1 X48 CHR=1 G1 Z-60 G1 X60 CHR=1 G1 Z-62 G1 X61 G0 X200 G0 Z200
M30	M30

Fig. 98. Comparison between the two programs which create the same profile: in the left column by means of the point to point programming, in the right column by using the direct programming functions CHR, FRCM and ANG

Fig. 99. Page for entering the blank part data

Fig. 100. Enter the missing data for the execution of this profile

Fig. 101. G2: circular interpolation in clockwise direction

Fig. 102. G3: circular interpolation in counterclockwise direction

Fig. 103. Programming of an arc by means of the radius center coordinates

Fig. 104. Functions for the definition of the working plane

Fig. 105. Round between a radius and the following line by means of G2 and RND

Fig. 106. Chamfer between a radius and the following line by means of G2 and CHR

Fig. 107. Use of the function G3

Fig. 108. Type of alarm displayed in the event of a programming error in a radius

Tool list MAGAZIN									GAZIF		
Loc.	Туре	Tool name	ST	D	Length X	Length Z	Ø		Tip angle		
1	•	ROUGHING TOOL	1	1	88.000	40.000	0.800	+	93.0	55	11.0
2	<u></u>	FINISHING TOOL	1	1	94.000	40.000	0.200	+	93.0	55	11.0
3	<u>u</u>	OD GROOVING W.3MM	1	1	98.000	40.000	0.100		3.000		10.0
4	·	OD THREADING	1	1	88.000	46.000	0.200				
5	2	CENTER DRILL D.6	1	1	100.000	24.000	6.000		118.0		
6	@	AX. DRILL D.8.5	1	1	100.000	56.000	8.500		118.0		

Fig. 109. List of tools to be created and used in the test program

Tooling sequence	Tool	Operation	Cutting speed (m/min)	Feed rate (mm/rev)
1 st	T1 D1	Roughing	100	0.18
2 nd	T2 D1	Finishing	120	0.12
3 rd	T3 D1	Groove	78	0.1
4 th	T4 D1	Threading	60	-
5 th	T5 D1	Center drilling	80	0.08
6 th	T6 D1	Hole D8.5	80	0.1

Fig. 110. Sequence of tooling operations and cutting parameters to use in the test

Fig. 111. Drawing of the part to create

Fig. 112. Offset points on the X-axis and Z-axis with tool radius

Fig. 113. Point moved by the NC after the tool offset

Fig. 114. Absence of changes due to the tool radius on diameters and shoulders

Fig. 115. Dimensional error caused by the insert radius during the execution of conical turnings

Fig. 116. Error caused by the insert radius during the execution of a circular interpolation

Fig. 117. Quadrant code defining the radius position with respect to the zero point

Fig. 118. Quadrant code 0 or 9 for tools offset at the radius center

Fig. 119. G42: radius tool 0.2, quadrant 3, to the right of the profile

Fig. 120. G42: radius tool 0.8, quadrant 1, to the right of the profile

Fig. 121. G41: radius tool 0.8, quadrant 2, to the left of the profile

Fig. 122. G41: radius tool 0.2, quadrant 4, to the left of the profile

Fig. 123. Enabling and disabling block outside of the profile

Fig. 124. Drawing of the part to create

11	SS AX. DRILL D.16	1	1	100.000	120.000	16.000	118.0	
12	ROUGH. BORING-BAR	1	1	86.000	92.000	0.400 ←	93.0 55	8.0

Fig. 125. Data of the new tools to create for the execution of the cycle

1)

a) G42, quadrant 3

b) G41, quadrant 3

c) G41, quadrant 4

2)

a) G41, quadrant 1

b) G42, quadrant 3

c) G42, quadrant 2

3)

a) G42, quadrant 4

b) G42, quadrant 2

c) G41, quadrant 4

4)

a) G41, quadrant 2

b) G42, quadrant 2

c) G41, quadrant 3

5)

a) G42, quadrant 2

b) G41, quadrant 2

c) G42, quadrant 1

6)

a) G41, quadrant 6

b) G42, quadrant 3

c) G42, quadrant 8

Fig. 126. The same right hand rule applies both to the lathe and to the mill.

Fig. 127. Positive direction of the axes: the arrows show the movements of the tool compared to the workpiece

Fig. 128. Vertical mill

Fig. 129. Horizontal mill

Fig. 130. C-axis in a machining center

Fig. 131. B-axis in a machining center

Fig. 132. CAM-generated profile for five-axis machining center

Fig. 133. Programming scheme on plane G17

Fig. 134. Position of the machine zero point and values to enter into the zero offset function for the definition of the part zero point

Fig. 135. Use of TRANS: 1: in a lathe; 2: in a machining center

Fig. 136. 1:Point moved by the NC; 2:Offset value of a mill on the Z-axis

Fig. 137. Measuring system outside the machine

Fig. 138. Start-up of the mill in the training software

Fig. 139. Page for the selection of the tools directly from the magazine

Fig. 140. Completion of the direct tool call instruction in the program

Blank part:	Cylinder			
XA:	Cylinder diameter.			
ZA:	Position of the upper face of the workpiece referring to the part zero point.			
ZI - absolute: - incremental:	Distance from the lower face of the workpiece: referring to the part zero point. referring to the upper face.			

Fig. 141. Description of the blank part dimensions: CYLINDER

Blank part:	Pipe
XA:	External diameter of the pipe.
XI:	Internal diameter of the pipe.

Fig. 142. Description of the blank part dimensions: PIPE

Blank part:	Block Centered		
W:	Side of the rectangle positioned along the Y-axis.		
L:	Side of the rectangle positioned along the X-axis.		

Fig. 143. Description of the blank part dimensions: BLOCK CENTERED

Blank part:	Block
X0:	Coordinate X of the edge referring to the part zero point.
Y0:	Coordinate Y of the edge referring to the part zero point.
X1:	Coordinate X of the opposite edge referring to the part zero point (abs.) or to the first edge (incr.).
Y1:	Coordinate Y of the opposite edge referring to the part zero point (abs.) or to the first edge (incr.).

Fig. 144. Description of the workpiece dimensions: BLOCK

Fig. 145. Description of the blank part dimensions: BLOCK

Blank part:	N Corner
N:	Number of edges of the polygon.
SW:	Dimension of the polygon's key (available only for polygons with even number of edges).

Fig. 146. Description of the workpiece dimensions: N CORNER

Fig. 147. Drawing of the part to be created

Fig. 148. Creation of the external profile

Fig. 149. Roughing of the internal profile

Fig. 150. Finishing of the internal profile

Fig. 151. Data entered in drilling cycle

Fig. 152. Graphic 3D image of the finished part

Fig. 153. Discordant cutting direction (left) and concordant cutting direction (right)

Fig. 154. Chip section area

Fig. 155. Relative movement between cutter and workpiece with discordant feed direction

Fig. 156. Cutting forces with discordant feed direction

Fig. 157. Relative movement between cutter and workpiece with concordant feed direction

Fig. 158. Cutting forces with concordant feed direction

Fig. 159. Cutting forces with concordant feed direction

Fig. 160. Cutting forces with concordant feed direction

Fig. 161. Conventional and climb face milling

Fig. 162. Three-dimensional representation of the workpiece

Fig. 163. Drawing of the part to create

Fig. 164. Three-dimensional representation of the workpiece

Fig. 165. Drawing of the part to create

Fig. 166. Three-dimensional representation of the workpiece

Fig. 167. Definition of a point in plane G17 using polar coordinates

Fig. 168. Drawing of the part to create

Fig. 169. Three-dimensional representation of the workpiece

Fig. 170. Drawing of the part to create

Fig. 171. List of tools to be created and used in the test program

Tooling sequence	Tool name	Operation	Cutting speed (m/min)	Feed rate (mm/rev)
1 st	T2 D1	Flattening	100	0.6
2 nd	T5 D1	Cylinder D112	120	0.3 climb milling
3 rd	T3 D1	Pocket D80	90	0.2 climb milling
4 th	T3 D1	Four milling operations	110	0.32
5 th	T1 D1	N2 holes D4	80	0.06
6 th	T4 D1	N4 holes D10	80	0.12

Fig. 172. Sequence of tooling operations and cutting parameters to use for the test

Three-dimensional representation of the workpiece

